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Next one determines the shock temperature 7' at this
same volume by means of the relation

Tp—T,=—. (14)

The nun.erator of Eq. (14) may be evaluated by meins
of Egs. (3) and (4) which, with the help of Eq. (6), may
be put in the form
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Once 7p and T, are known, it is very simple to compute
As, for

As=C, In(Tp/T%). (16)

It shouid perhaps be noted that Egs. (14) and (16) are
both based on processes occurring at constant volume,
in which of course no mechanical work is performed by
the system. On the other hand, the integrals in Eqs.
(13) and (15) are to be evaluated at constant entropy.

It will be clear that all the corrections to be made
depend on information about the temperature and
volume dependence of the various thermodynaniic
variables. Fortunately C, and (dp/dT), do not vary
much under the conditions covered by the observations.
The calculations for Duralumin have included an
estimate of this variation, though it has been found that
the tinal results would not be significantly changed if
both quantities were taken as constants.

The necessary calculations are quite straightforward
once an approximate expression for p as a function of
compression at constant entropy is known. The empi-
rical form chosen is

—
pa=anﬂ+ﬂnu2{ (17)

the entropy. constant. The value of the constant
a, is inferred from known values of the velocity of
sound and of the density under standard laboratory
conditions. Thus the data derived from shock measure-
ments are used merely to evaluate the constant f,.
Some question naturally arises as to how a, is related to
the observed sound velocity. Equation (17) is intended
to appiy to material under such great hydrostatic
pressure that any shearing stress is completely negligible
both in its magnitude and in its effect on the compres-
sion 7. Accordingly, it would seem natural to evaluate a,
for conditions under which compression occurs without
appreciable shearing stress. But determinations of
sound velocity in general are made either with bars, for
which ¢;= (E/p)t where E is Young’s modulus, or for
large masses of material for which ¢;=[(k+4G/3)/p]}
where £ is the bulk modulus and G the shear modulus.
It is the isentropic bulk modulus which relates pressure
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to compression when the shearing stress is negligible,
and nccordingly we have assumed that

ay= (ap/a#)-= - vo(aﬁ/a'ﬂ),= kl- (18)

A value of a, may be quickly deduced from ¢, if
Poisson’s ratio » is known, or from ¢, if the velocity of
shear waves ¢;= (G/p)! is known. In the latter case, the
computation is obvious; in the former,

a,=E,/3(1—2v). (19)

Most of the currently available data on compressi-
bilities at extreme pressures have been obtained iso-
thermally. These data may likewise be fitted well by an
equation similar to Eq. (17):

pr=aru+tBryu’. (20)
The relation between «, and ar is well known to be
Ag—QP= (voT/Cv) (al’/ar)=2 (21)

The corresponding difference between 8, and 87 is not
so well known, but may be written

Bl—ﬁ"': - (ac_aT)( 1— (})UOE(I/Cl’) (3P/0T)u
+3(8%p/dvdT)/ (dp/dT),—3(T/C,)(8°p/T?),
—(T/C*)(ap/dT).(aC,/aT),]}. (22)

In the course of developing experimental techniques
with a view to determining what ultimate precision is
possible, it was found convenient to use an alloy of
aluminum with superior mechanical properties rather
than the pure element for which static compressibilities
are available. In order to compare the present work with
that of others? it is desirable to estimate the effects of
the alloying constituents. This can be done easily if one
assumes that the volume of the alloy is equal to the sum
of the volumes of its constituents. For many alloys this
assumption leads to an excellent estimate of the normal
density, and it seems reasonable to expect that its
validity is not appreciably worse at high pressures. The
subscripts (1) and (2) will be used to denote properties
of the constituents; absence of either of these denotes a
property of the alloy. The additional subscript (o)
refers to a property under standard laboratory condi-
tions. Thus the equations of state involved would be

p=ap+pBu?,
p=auyu+piu’, (23)
p=aguatPoudd,

while the equation connecting the various compressions
is

1 X, 2 X,
po(p+1)  por(pt l)TPoz(#H‘ 1).

X, and X, denote the fractions by mass of the respective
constituents. Values of « and g8 in terms of a4, az, 81, and
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